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Abstract. Light-cone QCD sum rules are employed to compute the strong coupling constants: gB∗B∗π,
gB1B0π and gB1B∗π, where (B, B∗) and (B0, B1) are negative and positive parity (0−, 1−) and (0+, 1+) q̄Q
doublets. The couplings are calculated both for finite values of the heavy quark mass and in the infinite
heavy quark mass limit, deriving sum rules for mQ → ∞.

I Introduction

The recognition of the approximate symmetries of QCD,
explicitely or spontaneously broken, represents a basic
step for the understanding and the description of the strong
interactions in processes involving hadrons. A remarkable
example, in the sector of systems containing one heavy
quark, is the SU(2Nf ) heavy flavour-spin symmetry hold-
ing in the infinite heavy quark mass limit: mQf

→ ∞. In
this limit, the masses of the Nf heavy flavoured quarks are
irrelevant in the interactions with the hadronic light de-
grees of freedom, since the heavy quarks only act as static
colour sources. Moreover, the decoupling of the gluon from
the spin sQ of the heavy quark allows to relate the proper-
ties of the states belonging to the doublets obtained com-
bining sQ with the spin sP

` of the light degrees of freedom.
The SU(2Nf ) spin-flavour symmetry is explicitely broken
by the finite values of the heavy quark masses, and the
symmetry-breaking effects can be described using an ex-
pansion in the inverse masses of the heavy quarks [1,2].

At the opposite energy scale, for vanishing masses of
the up, down and strange quarks, QCD is invariant under
chiral SU(3)L × SU(3)R transformations; this symmetry
is spontaneously broken, the Goldstone bosons being rep-
resented by the octet of light pseudoscalar mesons [3].

Both the heavy quark spin-flavour and the chiral sym-
metries can be realized writing an effective QCD lagrang-
ian, expressed in terms of hadronic fields [4]. The interac-
tions of the heavy sP

` = 1
2

− and 1
2
+ mesons with the octet

of light pseudoscalar 0− mesons can be described by the
lagrangian:

L = i T r{Hbv
µDµbaH̄a} +

f2
π

8
Tr{∂µΣ∂µΣ

†}
+Tr{Sb (i vµDµba − δba ∆)S̄a}
+ i g Tr{Hbγµγ5Aµ

baH̄a} + i g′ Tr{Sbγµγ5Aµ
baS̄a}

+ [i h Tr{Sbγµγ5Aµ
baH̄a} + h.c.] . (1)

The fields Ha in (1) describe the negative parity JP =
(0−, 1−) q̄Q doublets (with sP

` = 1
2

−):

Ha =
(1 + v/)

2
[P ∗

aµγ
µ − Paγ5] , (2)

where the operators P ∗µ
a and Pa respectively annihilate

the 1− (B∗
a) and 0− (Ba) mesons of four-velocity v (a =

u, d, s is a light flavour index). In the infinite heavy quark
mass limit such states are degenerate in mass, due to the
vanishing of the chromomagnetic interaction of the heavy
quark spin with the spin of the light degrees of freedom
of the mesons. Hence, Ha describes a doublet of states
with the light degrees of freedom with zero orbital angular
momentum with respect to the heavy quark. Analogously
[5], the fields Sa describe a doublet of states having the
light degrees of freedom with angular momentum s` = 1

2
+

(P -waves in the constituent quark model):

Sa =
1 + v/

2
[Dµ

1 γµγ5 −D0] , (3)

with Dµ
1 , D0 annihilation operators for the states 1+ and

0+, respectively. Notice that all the heavy field operators
in the lagrangian (1) contain a factor

√
mP and have di-

mension 3/2; the parameter ∆ in (1) represents the mass
splitting between the positive and negative parity states.

The octet of light pseudoscalar mesons is included in
the effective lagrangian (1) using the exponential repre-
sentation: ξ = e

iM
fπ and Σ = ξ2; the matrix M contains

the π,K and η fields:

M =




√
1
2π

0 +
√

1
6η π+ K+

π− −
√

1
2π

0 +
√

1
6η K0

K− K̄0 −
√

2
3η


 (4)
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with fπ = 132 MeV . Finally, the operators D and A in
(1) are given by:

Dµba = δba∂µ + Vµba

= δba∂µ +
1
2

(
ξ†∂µξ + ξ∂µξ

†)
ba

(5)

Aµba =
1
2

(
ξ†∂µξ − ξ∂µξ

†)
ba
. (6)

The effective Lagrangian (1) can be generalized to in-
clude the interactions of heavy sP

` = 3
2
+ states, as well as

the interaction with the octet of low-lying vector mesons
[6].

The strong interactions between heavy Ha, Sa mesons
and the light pseudoscalar mesons, as described by (1),
are determined by three couplings: g, h and g′. The spin
symmetry implies that the couplings to light mesons (from
now on we refer to pions) do not depend on the particular
member of a doublet; for example, the couplings gB∗B∗π

and gB∗Bπ, defined respectively by the matrix elements

< B̄∗0(p, ε2)π−(q)|B∗−(p+ q, ε1) >

=
2i
fπ
gB∗B∗περσαβε

ρ
1ε

∗σ
2 pαqβ (7)

and

< B̄0(p)π−(q)|B∗−(p+ q, ε) >=
2mB

fπ
gB∗Bπε

µqµ (8)

(ε is the B∗ polarization vector), coincide with the same
coupling g in the limitmb → ∞. Analogously, the constant
h describes the coupling to pions of whatever a member of
the Ha doublet and a member of the Sa one, whereas the
strong interaction of positive parity Sa states with pions
is governed by the coupling g′.

Differences between the couplings of states belonging
to the same doublet are of order 1/mQ. Such differences
play an important role in the heavy meson phenomenol-
ogy; for example, the difference between the pion-vector-
vector gB∗B∗π and the pion-pseudoscalar-vector gB∗Bπ

coupling constant appears in the 1/mQ correcting terms
to the effective lagrangian (1) [7], and must be taken into
account in the calculation of the heavy meson hyperfine
splitting [8,9].

In [10–12] the couplings g and h were computed using
QCD sum rules and the short-distance expansion [13], in
the infinite heavy quark mass limit. The short-distance
expansion was also adopted to calculate the couplings
gB∗Bπ, gB∗B∗π and gB0Bπ for finite masses of the heavy
quarks [14,10,11,9,15]; comparing the results derived in
the asymptotic regime and for finite masses, significant in-
formation was obtained on the size of 1/mQ corrections.

A different approach to compute the strong couplings
was proposed in [16] and adopted in [11,17], using sum
rules based on the expansion near the light-cone [18–20]
1. The parameters gB∗Bπ, gB0Bπ were determined by this

1 Applications of the light-cone sum rule method to semilep-
tonic heavy meson decays can be found in [21] and in references
therein
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Fig. 1. The correlator in (9)

technique for finite masses of the charm and bottom
quarks, and the couplings g and h were obtained extrap-
olating to mQ → ∞ the results for finite mc and mb.

In this paper we derive light-cone QCD sum rules in
the limit mQ → ∞. This allows us to perform a systematic
comparison between the results of light-cone and short-
distance QCD sum rules, which can shed light on the crit-
ical parameters, the advantages and the drawbacks of both
the approaches. As we shall see, in the infinite heavy quark
mass limit a remarkable agreement between the two ap-
proaches is obtained, supporting our confidence on such
methods for the calculation of parameters which are sen-
sitive to the nonperturbative dynamics of QCD.

The plan of the paper is as follows. In Sect. II we ap-
ply light-cone sum rules to calculate the coupling g and
gB∗B∗π; the numerical analysis of this channel is presented
in Sect. III, together with a comparison with the results
obtained for gB∗Bπ. In Sect. IV and Sect. V we analyze the
couplings g′ and h, respectively; in particular, we consider
the process B1 → B0π. In Sect. VI we draw our conclu-
sions.

II Light-cone QCD sum rules
for gB∗B∗π and g

Let us first consider the finite heavy mass case, and com-
pute the coupling gB∗B∗π defined in (7). The correlator of
two vector currents Jµ = q̄γµb between the vacuum state
and a pion external state with momentum q:

Fµν(p, q)

= i

∫
dx < π−(q)|T [d̄(x)γµb(x), b̄(0)γνu(0)]|0 > eipx

= iεµναβp
αqβ F (9)

corresponds to the diagram depicted in Fig. 1. Considering
a pion on mass shell: q2 = m2

π (we set mπ = 0), the
invariant function F depends on p2 and (p+ q)2.

Following the same idea underlying the usual QCD
sum rule method, a hadronic representation can be given
to the correlator (9) in terms of the lowest lying reso-
nance, the B∗ pole, of higher resonances and a continuum
of states. In a double dispersion relation for F in the vari-
ables p2 and (p+ q)2:

F (p2, (p+ q)2) =
∫
dsds′ ρhad(s, s′)

(s− p2)(s′ − (p+ q)2)
, (10)
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the spectral function ρhad gets contributions from B∗ and
from higher states; therefore, it can be modeled as

ρhad(s, s′) =
2
fπ
gB∗B∗πm

2
B∗f2

B∗δ(s−m2
B∗)δ(s′ −m2

B∗)

+ρcont(s, s′)θ(s− s0)θ(s′ − s′
0) (11)

where ρcont(s, s′) includes the contribution of the higher
states and of the continuum above the effective thresholds
s0, s

′
0; the B∗ leptonic constant fB∗ in (11) is defined as

< 0|d̄γµb|B̄∗0(p, ε) >= mB∗fB∗εµ . (12)

We neglect in the dispersion relation (10) possible subtrac-
tion terms, which play no role in the Borel transformed
sum rules, as shown in the following.

For large positive values of −p2 and −(p + q)2 the
function F (p2, (p + q)2) can be computed in QCD. This
task is afforded expanding the T-product in (9) near the
light-cone (x2 = 0) in terms of non local operators, whose
matrix elements are defined by wave functions associated
with operators of increasing twist. According to the nota-
tions in [16], the catalog of the relevant matrix elements,
up to twist 4, is:

< π(q)|d̄(x)γµγ5u(0)|0 >

= −ifπqµ

∫ 1

0
du eiuqx(ϕπ(u) + x2g1(u) + O(x4))

+fπ

(
xµ − x2qµ

qx

) ∫ 1

0
du eiuqxg2(u) , (13)

< π(q)|d̄(x)iγ5u(0)|0 >

=
fπm

2
π

mu +md

∫ 1

0
du eiuqxϕP (u) , (14)

< π(q)|d̄(x)σµνγ5u(0)|0 > (15)

= i(qµxν − qνxµ)
fπm

2
π

6(mu +md)

∫ 1

0
du eiuqxϕσ(u) .

The wave function ϕπ is associated with the leading twist
2 operator, g1 and g2 correspond to twist 4 operators, and
ϕP and ϕσ to twist 3 ones. Due to the choice of the light-
cone gauge xµAµ(x) = 0, the path-ordered gauge factor
P exp

(
igs

∫ 1
0 dux

µAµ(ux)
)

has been omitted. Notice that
the coefficient in front of the r.h.s. of (14), (15) can be
written in terms of the light quark condensate < ūu >

using the PCAC relation:
fπm

2
π

mu +md
= − 2

fπ
< ūu >.

The pion matrix elements of quark-gluon operators can
also be parameterized in terms of wave functions [16]:

< π(q)|d̄(x)σαβγ5gsGµν(ux)u(0)|0 >
= if3π[(qµqαgνβ − qνqαgµβ) − (qµqβgνα − qνqβgµα)]

×
∫

Dαi ϕ3π(αi)eiqx(α1+vα3) , (16)

< π(q)|d̄(x)γµγ5gsGαβ(vx)u(0)|0 >

= fπ

[
qβ

(
gαµ − xαqµ

q · x
)

− qα

(
gβµ − xβqµ

q · x
)]

×
∫

Dαiϕ⊥(αi)eiqx(α1+vα3) (17)

+fπ
qµ
q · x (qαxβ − qβxα)

∫
Dαiϕ‖(αi)eiqx(α1+vα3)

and

< π(q)|d̄(x)γµgsG̃αβ(vx)u(0)|0 >
= ifπ

[
qβ

(
gαµ − xαqµ

q · x
)

− qα

(
gβµ − xβqµ

q · x
)]

×
∫

Dαiϕ̃⊥(αi)eiqx(α1+vα3) (18)

+ifπ
qµ
q · x (qαxβ − qβxα)

∫
Dαiϕ̃‖(αi)eiqx(α1+vα3) .

The operator G̃αβ is the dual of Gαβ : G̃αβ = 1
2εαβδρG

δρ;
Dαi is defined as Dαi = dα1dα2dα3δ(1 − α1 − α2 − α3).
The function ϕ3π is twist 3, while all the wave functions
appearing in (17), (18) are twist 4. The wave functions
ϕ(xi, µ) (µ is the renormalization point) describe the dis-
tribution in longitudinal momenta inside the pion, the pa-
rameters xi (

∑
i xi = 1) representing the fractions of the

longitudinal momentum carried by the quark and the an-
tiquark.

The wave function normalizations immediately follow
from the definitions (13)–(18):

∫ 1
0 du ϕπ(u) =

∫ 1
0 du ϕσ(u)

= 1,
∫ 1
0 du g1(u) = δ2/12,

∫ 1
0 du G2(u) = δ2/18 (with

G2 defined as G2(u) = − ∫ u

0 dv g2(v))
∫ Dαiϕ⊥(αi) =∫ Dαiϕ‖(αi) = 0,

∫ Dαiϕ̃⊥(αi) = − ∫ Dαiϕ̃‖(αi) = δ2/3,
with the parameter δ defined by the matrix element:
< π(q)|d̄gsG̃αµγ

αu|0 >= iδ2fπqµ.
In the limit µ → ∞ the wave functions assume an

asymptotic form which is approximately symmetric in the
variables xi and hence represents an almost equal distri-
bution of the pion momentum between its constituents.
This asymptotic wave function can be calculated by ex-
ploiting the conformal invariance of QCD in the short dis-
tance region. On the other hand, to investigate the general
properties of the wave functions and their deviation from
the asymptotic form, non perturbative methods are re-
quired. Usually, the momenta of the wave functions are
determined by QCD sum rules, and then the wave func-
tions themselves are reconstructed [16,20]. In a calculation
of the type presented here, however, the complete form of
the pion wave functions is not required, since only the val-
ues in particular points, namely near the symmetric point
u0 = 1/2, are needed. Therefore, the uncertainty in the
results is only related to a finite number of input param-
eters, as it will be shown in the following.

The expansion of the correlator (9) near the light-cone
produces the following expression for the invariant func-
tion F :

FQCD(p2, (p+ q)2)

= fπ

∫ 1

0
du

ϕπ(u)
m2

b − (p+ uq)2
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−fπ

∫ 1

0
du

4
[m2

b − (p+ uq)2]2
[
1 +

2m2
b

m2
b − (p+ uq)2

]
×(g1(u) +G2(u))

+2mb
fπm

2
π

6(mu +md)

∫ 1

0
du

ϕσ(u)
[m2

b − (p+ uq)2]2

+fπ

∫ 1

0
dv

∫
Dαi

ϕ⊥(αi) − ϕ̃⊥(αi)
{m2

b − [p+ q(α1 + vα3)]2}2 (19)

−4fπ

∫ 1

0
dv (v − 1)

∫ 1

0
dα3ψ̂(α3)

× p · q
{m2

b − [p+ q(1 + (v − 1)α3)]2}3

−4fπ

∫ 1

0
dv

∫ 1

0
dα3

∫ 1−α3

0
dα1φ̂(α1, α3)

× p · q
{m2

b − [p+ q(α1 + vα3)]2}3

+2fπ

∫ 1

0
v dv

∫
Dαi

ϕ‖(αi)
{m2

b − [p+ q(α1 + vα3)]2}2

where ψ̂(α3) = − ∫ α3

0 dt
∫ 1−t

0 φ(α1, t)dα1, φ̂(α1, α3) =
− ∫ α1

0 dtφ(t, α3), and φ = ϕ⊥ − ϕ̃⊥ + ϕ‖ − ϕ̃‖. Taking
into account the wave function normalizations we recover,
in the soft pion limit q → 0, the expressions obtained in
[9].

The sum rule for gB∗B∗π follows from the approximate
equality of the expressions (10) and (19). Moreover, invok-
ing duality arguments, the contribution of the continuum
in (10) corresponds to the QCD contribution. This allows
to isolate the pole contribution to (10). The equality be-
tween (10) and (19) can be improved performing a double
Borel transform in the variables −p2 and −(p+q)2. Defin-
ing M2

1 and M2
2 as the Borel parameters associated to the

channels p and p+ q, respectively, and using the formula:

BM2
1
BM2

2

(`− 1)!
[m2

b − (p+ uq)2]`

=
(M2)2−`

M2
1M

2
2

exp(−m2
b + q2(1 − u0)

M2 ) δ(u− u0) (20)

with M2 =
M2

1M
2
2

M2
1 +M2

2
and u0 =

M2
1

M2
1 +M2

2
, we get:

FQCD(M2
1 ,M

2
2 )

=
fπ

M2
1M

2
2
e− m2

b
M2

{
M2 ϕπ(u0) +

mbm
2
π

3(mu +md)
ϕσ(u0)

−4
(
1 +

m2
b

M2

)
[g1(u0) +G2(u0)]

+
∫ u0

0
dα1

∫ 1−α1

u0−α1

dα3

α3
(ϕ⊥ − ϕ̃⊥)

×(α1, 1 − α1 − α3, α3)

+2
∫ u0

0
dα1

∫ 1−α1

u0−α1

dα3
u0 − α1

α2
3

×ϕ‖(α1, 1 − α1 − α3, α3) (21)

−
[ ψ̂(1 − u0)

1 − u0
−

∫ 1

1−u0

dα3
ψ̂(α3)
α2

3

]

−
[ ∫ u0

0
dα3

φ̂(u0 − α3, α3)
α3

−
∫ 1

0
dα3

φ̂(u0, α3)
α3

]}
.

On the other hand the Borel transformed hadronic repre-
sentation of the function F reads:

F (M2
1 ,M

2
2 ) =

2
fπ

m2
B∗f2

B∗gB∗B∗π

M2
1M

2
2

e
−m2

B∗ ( 1
M2

1
+ 1

M2
2

)

+
∫
dsds′ρcont(s, s′)e

− s

M2
1

− s′
M2

2 . (22)

As shown in (22), the Borel transformation exponentially
suppresses, for small values of the parameters M2

1 ,M
2
2 ,

the contribution of higher states and of the continuum;
moreover, possible subtraction terms in (10), which de-
pend only on p2 or (p+ q)2, are removed by the indepen-
dent borelization in the two channels. This is a feature
which renders light-cone sum rules quite appealing, as far
as the calculation of the strong couplings is concerned.
As a matter of fact, the determination of the strong cou-
plings by, e.g., short-distance rules is usually performed in
the soft pion limit q → 0, thus preventing the possibility
of an independent borelization in the two B∗ channels.

Considering the symmetry of the correlator (9) (Fig. 1),
it is natural to choose M2

1 = M2
2 , and then u0 = 1/2, to-

gether with s0 = s′
0. Such a choice corresponds to a quark

and an antiquark of the same momentum inside the pion.
In this condition the subtraction of the continuum can be
performed, in the leading twist term, with the substitution
e−m2

b/M2 → e−m2
b/M2 − e−s0/M2

[16], a recipe we follow
considering that the numerical contribution of the higher
twist terms is small.

In this way we get the sum rule for gB∗B∗π:

f2
B∗gB∗B∗π

=
f2

π

2m2
B∗
e

m2
B∗

M2

{
(e− m2

b
M2 − e− s0

M2 )M2 ϕπ(u0)

+e− m2
b

M2

[ mbm
2
π

3(mu +md)
ϕσ(u0)

−4
(
1 +

m2
b

M2

)
[g1(u0) +G2(u0)]

+
∫ u0

0
dα1

∫ 1−α1

u0−α1

dα3

α3

(ϕ⊥ − ϕ̃⊥)(α1, 1 − α1 − α3, α3)

+2
∫ u0

0
dα1

∫ 1−α1

u0−α1

dα3
u0 − α1

α2
3

(23)

×ϕ‖(α1, 1 − α1 − α3, α3)

−
[ ψ̂(1 − u0)

1 − u0
−

∫ 1

1−u0

dα3
ψ̂(α3)
α2

3

]

−
[ ∫ u0

0
dα3

φ̂(u0 − α3, α3)
α3

−
∫ 1

0
dα3

φ̂(u0, α3)
α3

]}
.
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The numerical analysis of this sum rule is described
in the next section. Here we want to show that (23) has
the right behaviour in the limit mb → ∞ [16], and that
an analytical expression can be derived in the asymptotic
regime.

In the limitmb → ∞ the B∗ meson mass can be related
to the b quark mass by the relationmB∗ = mb+Λ+O( 1

mb
),

where Λ represents the binding energy of the light degrees
of freedom in the static b quark chromomagnetic field.
Moreover, the B∗ leptonic constant depends on mb as:
fB∗ = F̂√

mb
(modulo logarithmic corrections), with F̂ a

low energy parameter remaining constant in the infinite
mb limit. Rescaling the Borel parameter: M2 = 2mbE,
and the continuum threshold s0 = m2

b + 2mby0, with E
and y0 independent of the heavy mass, we recover from
(23) a sum rule holding in the asymptotic limit:

F̂ 2g = f2
πe

Λ
E

{(
1 − e− y0

E

)
Eϕπ(u0) − < ūu >

3f2
π

ϕσ(u0)

− 1
E

[g1(u0) +G2(u0)]

}
, (24)

which is the analogous of the sum rule derived for g [10]
by the short distance expansion. Notice that the sum rule
(24) is not hampered by the problem of the subtraction
of the so-called “parasitic” contributions, which must be
carefully treated in the short-distance calculation [10]; as
a matter of fact, it results from two independent boreliza-
tions with parameters E1 and E2, with u0 = E1

E1+E2
and

E = E1E2
E1+E2

.
Finally, for mb → ∞, it is worth observing that the

light-cone sum rule for gB∗Bπ [16] coincides with (24), as
required by the heavy spin symmetry.

III Numerical analysis for gB∗B∗π and g

The numerical analysis of (23), (24) requires a set of light-

cone pion wave functions. Actually, if the choice u0 =
1
2

is
made, only the value of the wave functions in the middle
point is needed.

Different sets of wave functions are available in the
literature. Here we use the functions derived in [20] and
adopted in [16] to compute the coupling gB∗Bπ. At the
b-quark mass scale the values of the various functions ap-
pearing in (23), at u0 = 1

2 , are: ϕπ(u0) = 1.219, ϕσ(u0) =
1.463, g1(u0) = −3.37× 10−3 GeV 2 and G2(u0) = −1.8×
10−2 GeV 2; these two last numbers correspond to the
choice δ2(mb) = 0.17 GeV 2. The expressions for the func-
tions φ and φ̃ can be found in [16]; their contribution to
the sum rule corresponds to a small fraction (of the order
of 10−2) of the final result.

Using mb = 4.6 GeV [22], < ūu >= −(240 MeV )3
and the threshold s0 in the range s0 = 33 − 35 GeV 2 we
get the result depicted in Fig. 2. The duality domain in
M2, where the continuum contribution is small (less than
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Fig. 2. Stability curve for f2
B∗ gB∗B∗π. The curves corre-

spond to the threshold s0 = 34 GeV 2 (continuous line),
s0 = 35 GeV 2 (dashed line), s0 = 36 GeV 2 (dotted line)
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Fig. 3. Stability curve for f2
D∗ gD∗D∗π. The curves correspond

to s0 = 6 GeV 2 (continuous line), s0 = 6.5 GeV 2 (dashed line),
s0 = 7 GeV 2 (dotted line)

30 %), can be chosen as M2 = 6−12 GeV 2. The result is:

f2
B∗ gB∗B∗π = (8.5 ± 1.5) × 10−3 GeV 2 , (25)

where the uncertainty is due to the variation with the
threshold s0 and the Borel parameter M2. We do not in-
clude the uncertainty on the wave functions, which we
consider as external input parameters.

Equation (23) can also be used to compute the cou-
pling gD∗D∗π. Using mc = 1.35 GeV and s0 = 6−7 GeV 2,
taking into account the variation of the wave functions
with the renormalization scale, we derive the result in
Fig. 3. In the range M2 = 2 − 4 GeV 2 we get:

f2
D∗ gD∗D∗π = (1.8 ± 0.3) × 10−2 GeV 2 . (26)

The results (25), (26) favourably compare with the out-
come of short-distance QCD sum rules [9]: f2

B∗gB∗B∗π =
(9.4 ± 1.8) × 10−3 GeV 2, f2

D∗gD∗D∗π = (1.7 ± 0.4) ×
10−2 GeV 2.

The analogous couplings B∗Bπ, D∗Dπ, computed us-
ing the same set of parameters, are:

fBfB∗ gB∗Bπ = (7.9 ± 1.0) × 10−3 GeV 2 (27)
fDfD∗ gD∗Dπ = (1.5 ± 0.2) × 10−2 GeV 2 (28)
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Fig. 4. Stability curve for Λ and for F̂ 2g. The curves cor-
respond to the threshold y0 = 1.2 GeV (continuous line),
y0 = 1.3 GeV (dashed line), y0 = 1.4 GeV (dotted line)

to be compared with the short-distance based calcula-
tion [10]: fBfB∗ gB∗Bπ = (7.0 ± 1.5) × 10−3 GeV 2 and
fDfD∗ gD∗Dπ = (1.2 ± 0.3) × 10−2 GeV 2.

The analysis of the asymptotic sum rule (24) allows
to derive g and, by taking the logarithmic derivative in
1/E, the parameter Λ. Using y0 = 1.2 − 1.4 GeV and
E = 0.8 − 2.0 GeV , we get, from the curves depicted in
Fig. 4:

Λ = 0.40 ± 0.07 GeV (29)

F̂ 2g = 0.031 ± 0.006 GeV 3 ; (30)

the analogous result obtained in [10] is F̂ 2g = 0.035 ±
0.008 GeV 3.

The calculation of the couplings can be done, using
(25-28), once the leptonic constants are known. Since the
correlator (9) has been computed at the leading order in
αs, it is consistent to use the leptonic constants deter-
mined at the same order. Then, one can use [23]: fB∗ =
190±10 MeV , fD∗ = 220±24 MeV , fB = 150±20 MeV ,
fD = 170 ± 10 MeV , with the results:

gB∗B∗π = 0.24 ± 0.05 , gD∗D∗π = 0.31 ± 0.08 (31)
gB∗Bπ = 0.28 ± 0.05 , gD∗Dπ = 0.40 ± 0.07 . (32)

To derive the value of g, in the limit mb → ∞, one can
linearly extrapolate the above results:

gP ∗P ∗π = g
(
1 +

a

mQ

)
(33)

gP ∗Pπ = g
(
1 +

b

mQ

)
, (34)

obtaining:

g = 0.21 ± 0.07 , a = 0.6 ± 0.9 GeV (35)
g = 0.23 ± 0.08 , b = 1.0 ± 1.0 GeV (36)

from gP ∗P ∗π and gP ∗Pπ, respectively. The results (35),
(36) show that the same value for g is obtained by extrap-
olating to mb → ∞ the values obtained for gP ∗P ∗π and
gP ∗Pπ. One can conservatively quote g = 0.22 ± 0.10 as
the result of the extrapolation. It is also worth observing
that, although the fit does not accurately fix the param-
eters a, b, the 1/mQ corrections are rather sizable in the
case of the charm quark.

Let us now consider the calculation of g from (30).
Using the determination in [24]: F̂ = 0.30±0.05, obtained
neglecting radiative O(αs) corrections, one gets:

g = 0.34 ± 0.10 , (37)

a result which, although higher in the central value, is
compatible with the outcome of the fit.

It is interesting to consider the inclusion of O(αs) cor-
rections in the leptonic constants, to investigate at least
partially the role of the perturbative corrections in the de-
termination of g. Using, therefore, fB∗ = 213 ± 34 MeV ,
fD∗ = 258 ± 26 MeV , fB = 180 ± 30 MeV , fD =
195 ± 20 MeV [23], one gets:

gB∗B∗π = 0.19 ± 0.04 , gD∗D∗π = 0.23 ± 0.05 (38)
gB∗Bπ = 0.21 ± 0.06 , gD∗Dπ = 0.30 ± 0.06 , (39)

i.e.:

g = 0.17 ± 0.06 , a = 0.6 ± 0.8 GeV (40)
g = 0.17 ± 0.08 , b = 1.0 ± 1.4 GeV . (41)

The inclusion of the O(αs) terms in the leptonic constants
does not spoil the prediction that the same g is obtained
from the B∗B∗π and B∗Bπ channels. The numerical value
of g results modified at the level of 30%.

Several determinations of the coupling g can be found
in the literature [10,9,15,16,25,26], with values varying up
to g = 1. The analysis reported here points towards small
values of g, in agreement with the outcome of the rela-
tivistic potential model [25], which shows that the nonrel-
ativistic result g = 1 is reduced (g ' 1/3) if a relativistic
treatment of the light quarks is adopted.

IV Light-cone sum rules for gB1B0π and g′

The same method described in the previous sections can
be used to determine the coupling g′, which weightes in
the lagrangian (1) the strong interaction between positive
parity heavy mesons and pions. For a finite mass of the
heavy quark, the coupling gB1B0π can be obtained from
the correlator of a scalar JS = q̄Q and an axial Jµ

a =
q̄γµγ5Q current:

Gµ(p, p+ q)

= i

∫
dx < π−(q)|T [d̄(x)b(x), b̄(0)γµγ5u(0)]|0 > eipx

= G(0)(p+ q)µ +G(1)qµ (42)
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since the invariant function G(1) gets contribution from
the poles B0 and B1. Defining

< π(q)B0(p)|B1(p+ q, ε) >=
2√

mB0mB1

fπ
gB1B0π ε · q

(43)
with mB1 and mB0 the masses of the positive 1+ and 0+

states, respectively, and

< 0|b̄u|B0 >=
fB0m

2
B0

mb
, (44)

< 0|d̄γµγ5b|B1(p, ε) >= fB1mB1εµ , (45)

we get the Borel transformed sum rule for gB1B0π:

gB1B0π

2fB1m
3
2
B1
fB0m

5
2
B0

fπmb

= e
m2

B0
+m2

B1
2M2

{
(e−m2

b/M2 − e−s0/M2
)M2mbfπϕπ(u0)

+e−m2
b/M2

[
M2

[
− fπm

2
π

mu +md
(1 − u0)ϕP (u0)

− fπm
2
π

6(mu +md)

(
2ϕσ(u0) − (1 − u0)

dϕσ

du
(u0)

)]

−
[
2mbfπ(1 − u0)g2(u0) +

fπm
2
π

6(mu +md)
2m2

bϕσ(u0)
]

− 1
M2 4m3

bfπ[g1(u0) +G2(u0)] (46)

−mbfπ

∫ u0

0
dα1

∫ 1−α1

u0−α1

dα3

×(−ϕ‖ + ϕ̃‖ + 2ϕ⊥ − 2ϕ̃⊥)(α1, 1 − α1 − α3, α3)

−2M2f3π

[ ∫ 1−u0

0

dα3

α3
ϕ3π(u0, 1 − u0 − α3, α3)

−
∫ u0

0
dα1

∫ 1−α1

u0−α1

dα3

α2
3
ϕ3π(α1, 1 − α1 − α3, α3)

]]}
.

In the infinite heavy quark mass limit, it is easy to derive
from (46) the sum rule for g′, using the scaling law fB1 =
F̂+√
mb

:

F̂+2g′ =
fπ

2
e

Λ′
E

{(
1 − e− y0

E

)
2Efπϕπ(u0) (47)

+
2
3
< ūu >

fπ
ϕσ(u0) − 2fπ

E
[g1(u0) +G2(u0)]

}
.

E is the Borel parameter; Λ′ is the binding energy for the
s` = 1

2
+ doublet: Λ′ = mB1,0 −mb, and it can be obtained

by the logarithmic derivative of (47).
Before performing the numerical analysis of (46), we

notice a potential numerical problem related to the pres-
ence of terms of opposite signs and similar sizes contribut-
ing to the sum rule. An example is represented by the first
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Fig. 5. Stability curve for Λ′ and for F̂+2g′. The curves cor-
respond to y0 = 1.3 GeV (continuous line), y0 = 1.4 GeV
(dashed line), y0 = 1.5 GeV (dotted line)

two terms in (46), respectively proportional to ϕπ and ϕP .
For intermediate values of the heavy quark masses there
is no evidence of a hierarchical structure among the con-
tributions from different twists; moreover, cancellations
between various terms result in a critical dependence on
the values of the wave functions, which have their own un-
certainties. On the other hand, in the infinite heavy quark
mass limit such a problem does not occur, and therefore
(47) provides us with the possibility of determining g′
more reliaby.

Using mB1 = mB0 = 5.7 GeV and s0 = 36 − 38 GeV 2

we get

fB1fB0 gB1B0π = (1.2 ± 0.4) × 10−3 GeV 2 . (48)

A determination of gP1P0π immediately follows, using the
leptonic constants of B1 and B0 computed in [23]: fB1 =
180 ± 30 MeV , fB0 = 180 ± 30 MeV (the corresponding
constants in the charm case are fD1 = 240± 20 MeV and
fD0 = 170 ± 20 MeV ). We get:

gB1B0π = 0.05 ± 0.02 . (49)

Going to smaller heavy quark masses, the coupling gP1P0π

decreases. However, the cancellation between different
terms becomes more and more important, and the result
becomes critically dependent on the values of the wave
functions.

The asymptotic sum rule (47), depicted in Fig. 5 and
obtained varying y0 in the range y0 = 1.3 − 1.5 GeV , and
the Borel parameter E in the range E = 1.0 − 2.0 GeV ,
provides the result:

Λ′ = 0.89 ± 0.05 GeV (50)

F̂+2g′ = 0.022 ± 0.003 GeV 3 . (51)
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Using F̂+ = 0.46 ± 0.06 GeV
3
2 [23] the last equation cor-

responds to:
g′ = 0.10 ± 0.02 . (52)

The comparison between (49) and (52) gives an insight
on the role of the heavy quark mass corrections in the case
of the determination of the strong coupling g′.

V Light-cone QCD sum rule for gB1B∗π and h

To complete our analysis of the couplings appearing in (1)
we consider the parameter h corresponding to the cou-
plings B1B

∗π and B0Bπ. The coupling gB0Bπ has been
computed by light-cone and short-distance QCD sum rules
in [11], while a determination of gB1B∗π can be found in
[17]. Here we want to derive an expression for h.

Let us define gB1B∗π by the matrix element

< B∗(p, ε)π(q)|B1(p+ q, η) >

= gB1B∗π(ε∗ · η) p · q
mB1

+ (p · η)(q · ε∗)F ; (53)

gB1B∗π is related to the coupling h in (1) by:

gB1B∗π = −2h
fπ

√
mB1mB∗ , (54)

whereas the structure F is subleading in the mQ → ∞
limit. To calculate gB1B∗π one has to consider the corre-
lator of an axial and a vector current:

Hµν(p, p+ q)

= i

∫
dx < π−(q)|T [d̄(x)γµb(x), b̄(0)γνγ5u(0)]|0 > eipx

= H(0)gµν +H(1)pµpν + ... . (55)

The 1+ and 1− poles contribute to the invariant function
H(0), which must be considered to derive gB1B∗π. One
obtains the Borel transformed sum rule:

gB1B∗π(mB1 −mB∗)fB1mB1fB∗mB∗e−
m2

B∗+m2
B1

2M2

= fπ

{(
e− m2

b
M2 − e− s0

M2

)(M4

2
ϕ′

π(u0)

+
mbm

2
π

mu +md
M2ϕP (u0)

)
− e−m2

b/M2

[
2m2

bg2(u0)

+2M2
(
1 +

m2
b

M2

)
[G′

2(u0) + g′
1(u0)] (56)

+M2
[ ∫ u0

0

dα3

2α3
(ϕ‖ + ϕ̃‖)(u0 − α3, 1 − u0, α3)

+
∫ 1

0

dα3

2α3
(ϕ‖ − ϕ̃‖)(u0, 1 − u0 − α3, α3)

−
∫ u0

0
dα1

∫ 1−α1

u0−α1

dα3

α2
3
ϕ‖(α1, 1 − α1 − α3, α3)

]]}
.

Differently from the calculation of g and g′, the de-
termination of h does not concern a symmetric correlator
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Fig. 6. Stability curve for F̂ F̂+h. The curves correspond to
y0 = 1.3 GeV (continuous line), y0 = 1.4 GeV (dashed line),
y0 = 1.5 GeV (dotted line)

(Fig. 1). However, also in this case the choice u0 = 1/2
allows us to use the same values of the pion wave func-
tions employed for g, g′, which reduces the uncertainty
related to the wave functions. Considering that ϕ′

π

(
1
2

)
=

g2

(
1
2

)
= G′

2

(
1
2

)
= g′

1

(
1
2

)
= 0, in the limit mb → ∞ one

obtains from (56) the expression:

F̂+ F̂ h = − f2
πm

2
π

mu +md

E

Λ′ − Λ
(1 − e−y0/E)e

Λ′+Λ
2E ϕP (u0) .

(57)
Equation (57) coincides with the expression that can be
obtained from the sum rule for gB0Bπ [11].

The numerical results from (56), using the same set of
parameters chosen in the previous Sections:

fB1fB∗gB1B∗π = 1.9 ± 0.4 GeV 2 ,

fD1fD∗gD1D∗π = 1.2 ± 0.2 GeV 2 (58)

produce the following values for gP1P ∗π:

gB1B∗π = 56 ± 15 , gD1D∗π = 23 ± 5 . (59)

The linear extrapolation to mb → ∞: hP1P ∗π = h(1+ d
mQ

)
determines the coupling h:

h = −0.7 ± 0.3 , d = 0.0 ± 0.7 GeV . (60)

The same result comes from (57); as a matter of fact,
choosing y0 = 1.3 − 1.5 GeV and the mass parameters
Λ, Λ′ derived in the previous sections, the result (Fig. 6):

F̂ F̂+ h = −0.083 ± 0.005 GeV 3 (61)

corresponds to

h = −0.60 ± 0.13 , (62)

in agreement with the determination h = −0.56 ± 0.28
obtained in [11] from gB0Bπ.
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VI Conclusions

The strong couplings of heavy mesons to pions are ex-
pected to obey symmetry relations in the mQ → ∞ limit,
when QCD displays invariance under rotations in the
heavy quark spin and flavour space. In this limit, it can be
shown that the number of independent couplings reduces
to a set of effective parameters.

We employed light-cone sum rules to evaluate the cou-
plings gP ∗P ∗π, gP ∗P1π, gP1P0π, (P = D,B) both for finite
values of the heavy quark mass and in the infinite mass
limit. This procedure allowed us to observe that the light-
cone sum rule method reproduces the right mQ scaling
behaviour for the physical quantities. Moreover, we veri-
fied that the asymptotic results agree with usual QCD sum
rules based on the short distance expansion. This compar-
ison enforces our confidence in the reliability of both the
variants of the QCD sum rule tecnique (e.g. short distance
based and light cone sum rules), which are among the few
available instruments to investigate non perturbative as-
pects of QCD.
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